Физические основы лучевой терапии (ЛТ)
Виды и свойства ионизирующих излучений
Ядра атомов естественных и искусственных радиоактивных элементов в отличие от стабильных нерадиоактивных находятся в состоянии неустойчивого равновесия. Такие ядра неизбежно претерпевают структурную перестройку. Распад радиоактивных изотопов сопровождается испусканием из ядра элементарных частиц (электроны, позитроны, a-частицы) и превращением в другое радиоактивное или стабильное вещество. При выходе из ядра элементарных частиц испускается квант электромагнитного g-излучения.
Скорость распада ядер зависит от их строения и поэтому не может быть изменена. Средняя продолжительность, в течение которой атомы существуют до распада, является строго определенной величиной. Интенсивность распада в каждый данный момент пропорциональна числу атомов данного радиоактивного вещества; по мере уменьшения числа неустойчивых атомов интенсивность распада уменьшается. Время, в течение которого распадаются все неустойчивые атомы, называется периодом распада. Для каждого изотопа этот период строго определенный. Обычно при характеристике изотопа указывается время полураспада, в течение которого распадается половина радиоактивного вещества. Элементарные частицы и g-кванты, испускаемые при распаде радиоактивных элементов, представляют собой излучения, которые применяются с лечебной целью.
Ионизирующими называют излучения, которые при взаимодействии со средой, в том числе с тканями живого организма, превращают нейтральные атомы в ионы (частицы, несущие отрицательный или положительный электрический заряд).
Ионизирующие излучения (ИИ) подразделяются на корпускулярные и фотонные (квантовые). К корпускулярным
излучениям относятся потоки заряженных частиц - электронов, позитронов, протонов, нейтронов, дейтронов, a-частиц, p-мезонов. Фотонные
излучения - это потоки квантов, не имеющих заряда, энергия которых определяется их частотой или длиной волны.
Фотонные ИИ включают g-излучение радиоактивных изотопов, характеристическое и тормозное излучения, генерируемые ускорителями электронов.
Механизмы взаимодействия фотонных и корпускулярных излучений с веществом неодинаковы, но итог взаимодействия сходен - ионизация среды распространения.
Для характеристики взаимодействия различных видов ИИ используются три основных параметра:
ü Линейная плотность ионизации (ЛПИ) -
среднее количество пар ионов, образованных заряженной частицей, на единицу длины пробега. ЛПИ характеризует ионизирующую способность излучения.
ü Линейная передача энергии (ЛПЭ) -
средняя энергия, переданная частицей веществу на единицу длины пробега частицы.
ü Средняя длина свободного пробега
. В результате взаимодействия ИИ с веществом энергия ионизирующих частиц уменьшается до тех пор, пока она не станет соизмеримой с энергией теплового движения молекул. Путь, который проходят при этом частицы, характеризуется средней длиной свободного пробега в данном веществе.
Корпускулярные ионизирующие излучения
Положительно заряженные частицы
a-излучениепредставляет собой поток ядер гелия, несущих два положительных заряда. Так как масса a-частиц значительна по сравнению с массой электронов атомов, с которыми они соударяются, то траектория a-частиц прямолинейна. Вследствие большого заряда и малой скорости a-частицы весьма интенсивно взаимодействуют с электронами поглощающего материала; быстро расходуя свою энергию, они успевают пройти очень малое расстояние. В тканях человека a-частицы поглощаются на глубине 50 мкм, в воздухе их пробег равен 7-12 см. Это определяет относительно малую радиационную опасность a-частиц при наружном облучении.
Протонные пучки.
Как и a-частицы, характеризуются наибольшими массой и зарядом по сравнению с другими видами ИИ. Их траектории также прямолинейны.
ЛПИ, создаваемая положительно заряженными частицами, неравномерна вдоль трека частицы, образует в конце пробега так называемый "пик Брегга", т.е. тяжелые частицы в конце пути дают ЛПИ, в сотни раз превышающую ЛПИ в начале пути (рис.1). Это объясняется тем, что, замедляясь, тяжелые частицы взаимодействуют с веществом со значительно большей вероятностью. Положение пика Брегга зависит от энергии частиц - чем больше энергия, тем больше глубина его локализации.
ЛПИ
Пик Брегга